Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
bioRxiv ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38746371

RESUMO

Clinical research emphasizes the implementation of rigorous and reproducible study designs that rely on between-group matching or controlling for sources of biological variation such as subject's sex and age. However, corrections for body size (i.e. height and weight) are mostly lacking in clinical neuroimaging designs. This study investigates the importance of body size parameters in their relationship with spinal cord (SC) and brain magnetic resonance imaging (MRI) metrics. Data were derived from a cosmopolitan population of 267 healthy human adults (age 30.1±6.6 years old, 125 females). We show that body height correlated strongly or moderately with brain gray matter (GM) volume, cortical GM volume, total cerebellar volume, brainstem volume, and cross-sectional area (CSA) of cervical SC white matter (CSA-WM; 0.44≤r≤0.62). In comparison, age correlated weakly with cortical GM volume, precentral GM volume, and cortical thickness (-0.21≥r≥-0.27). Body weight correlated weakly with magnetization transfer ratio in the SC WM, dorsal columns, and lateral corticospinal tracts (-0.20≥r≥-0.23). Body weight further correlated weakly with the mean diffusivity derived from diffusion tensor imaging (DTI) in SC WM (r=-0.20) and dorsal columns (-0.21), but only in males. CSA-WM correlated strongly or moderately with brain volumes (0.39≤r≤0.64), and weakly with precentral gyrus thickness and DTI-based fractional anisotropy in SC dorsal columns and SC lateral corticospinal tracts (-0.22≥r≥-0.25). Linear mixture of sex and age explained 26±10% of data variance in brain volumetry and SC CSA. The amount of explained variance increased at 33±11% when body height was added into the mixture model. Age itself explained only 2±2% of such variance. In conclusion, body size is a significant biological variable. Along with sex and age, body size should therefore be included as a mandatory variable in the design of clinical neuroimaging studies examining SC and brain structure.

2.
Neurooncol Adv ; 6(1): vdae005, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38616896

RESUMO

Background: Non-enhancing (NE) infiltrating tumor cells beyond the contrast-enhancing (CE) bulk of tumor are potential propagators of recurrence after gross total resection of high-grade glioma. Methods: We leveraged single-nucleus RNA sequencing on 15 specimens from recurrent high-grade gliomas (n = 5) to compare prospectively identified biopsy specimens acquired from CE and NE regions. Additionally, 24 CE and 22 NE biopsies had immunohistochemical staining to validate RNA findings. Results: Tumor cells in NE regions are enriched in neural progenitor cell-like cellular states, while CE regions are enriched in mesenchymal-like states. NE glioma cells have similar proportions of proliferative and putative glioma stem cells relative to CE regions, without significant differences in % Ki-67 staining. Tumor cells in NE regions exhibit upregulation of genes previously associated with lower grade gliomas. Our findings in recurrent GBM paralleled some of the findings in a re-analysis of a dataset from primary GBM. Cell-, gene-, and pathway-level analyses of the tumor microenvironment in the NE region reveal relative downregulation of tumor-mediated neovascularization and cell-mediated immune response, but increased glioma-to-nonpathological cell interactions. Conclusions: This comprehensive analysis illustrates differing tumor and nontumor landscapes of CE and NE regions in high-grade gliomas, highlighting the NE region as an area harboring likely initiators of recurrence in a pro-tumor microenvironment and identifying possible targets for future design of NE-specific adjuvant therapy. These findings also support the aggressive approach to resection of tumor-bearing NE regions.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38383055

RESUMO

BACKGROUND AND PURPOSE: The impairment of the glymphatic system, a perivascular network crucial for brain waste clearance, has been linked to cognitive impairment, potentially attributed to the accumulation of brain waste. Although marijuana use has been associated with poorer cognitive performance, particularly in adolescents, its influence on the glymphatic system remains unexplored. This study evaluated the influence of the age of first marijuana use and the total number of lifetime uses on the glymphatic system, measured using the index of diffusion tensor imaging along the perivascular space (DTI-ALPS). Furthermore, we explored the correlation between glymphatic clearance and cognitive performance among marijuana users.MATERIALS AND METHODS: In this study, 125 individuals who reported using marijuana at least once in their lifetime (43 men; mean age, 28.60 ± 3.84 years) and 125 individuals with zero lifetime cannabis use (nonusers; 44 men; mean age, 28.82 ± 3.56 years) were assessed. ALPS indices of all study participants were calculated using 3T diffusion MRI data (b = 1,000 s/mm2).RESULTS: After adjusting for age, sex, education years, Pittsburgh Sleep Quality Index, alcohol use, tobacco use, and intracranial volume, our analysis using a univariate general linear model revealed no significant difference in the ALPS index among nonusers and marijuana users with different ages of first use or various frequencies of lifetime usage. However, in marijuana users, multiple linear regression analyses showed associations between a lower ALPS index and earlier age of first marijuana use (standardized ß, -0.20; P = 0.041), lower accuracy in the working memory 0-back task (standardized ß, 0.20; P = 0.042), and fewer correct responses in the fluid intelligence test (standardized ß, 0.19; P = 0.045).CONCLUSIONS: This study shows the potential use of DTI-ALPS as a noninvasive indirect indicator of the glymphatic clearance in young adults. Our findings show novel adverse effects of younger age at first use of marijuana on glymphatic system function, which is associated with impaired working memory and fluid intelligence. Gaining insights into alterations in glymphatic function following marijuana use could initiate novel strategies to reduce risk of cognitive impairment.ABBREVIATIONS: ALPS = Along the perivascular space; FA = Fractional anisotropy; ICV = Intracranial volume; ISF = Interstitial fluid; MLR = Multiple linear regression; PSQI = Pittsburgh Sleep Quality Index; ROI = Region of interest; SSAGA = Semi-Structured Assessment for the Genetics of Alcoholism; VIF = Variance inflation factor.

4.
Magn Reson Med ; 91(5): 1863-1875, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38192263

RESUMO

PURPOSE: To evaluate a vendor-agnostic multiparametric mapping scheme based on 3D quantification using an interleaved Look-Locker acquisition sequence with a T2 preparation pulse (3D-QALAS) for whole-brain T1, T2, and proton density (PD) mapping. METHODS: This prospective, multi-institutional study was conducted between September 2021 and February 2022 using five different 3T systems from four prominent MRI vendors. The accuracy of this technique was evaluated using a standardized MRI system phantom. Intra-scanner repeatability and inter-vendor reproducibility of T1, T2, and PD values were evaluated in 10 healthy volunteers (6 men; mean age ± SD, 28.0 ± 5.6 y) who underwent scan-rescan sessions on each scanner (total scans = 100). To evaluate the feasibility of 3D-QALAS, nine patients with multiple sclerosis (nine women; mean age ± SD, 48.2 ± 11.5 y) underwent imaging examination on two 3T MRI systems from different manufacturers. RESULTS: Quantitative maps obtained with 3D-QALAS showed high linearity (R2 = 0.998 and 0.998 for T1 and T2, respectively) with respect to reference measurements. The mean intra-scanner coefficients of variation for each scanner and structure ranged from 0.4% to 2.6%. The mean structure-wise test-retest repeatabilities were 1.6%, 1.1%, and 0.7% for T1, T2, and PD, respectively. Overall, high inter-vendor reproducibility was observed for all parameter maps and all structure measurements, including white matter lesions in patients with multiple sclerosis. CONCLUSION: The vendor-agnostic multiparametric mapping technique 3D-QALAS provided reproducible measurements of T1, T2, and PD for human tissues within a typical physiological range using 3T scanners from four different MRI manufacturers.


Assuntos
Encéfalo , Esclerose Múltipla , Masculino , Humanos , Feminino , Reprodutibilidade dos Testes , Estudos Prospectivos , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Esclerose Múltipla/diagnóstico por imagem , Mapeamento Encefálico
5.
Mult Scler Relat Disord ; 83: 105437, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38244527

RESUMO

BACKGROUND: Multiple sclerosis (MS) is a refractory immune-mediated inflammatory disease of the central nervous system, and some cases of the major subtype, relapsing-remitting (RR), transition to secondary progressive (SP). However, the detailed pathogenesis, biomarkers, and effective treatment strategies for secondary progressive multiple sclerosis have not been established. The glymphatic system, which is responsible for waste clearance in the brain, is an intriguing avenue for investigation and is primarily studied through diffusion tensor image analysis along the perivascular space (DTI-ALPS). This study aimed to compare DTI-ALPS indices between patients with RRMS and SPMS to uncover potential differences in their pathologies and evaluate the utility of the glymphatic system as a possible biomarker. METHODS: A cohort of 26 patients with MS (13 RRMS and 13 SPMS) who met specific criteria were enrolled in this prospective study. Magnetic resonance imaging (MRI), including diffusion MRI, 3D T1-weighted imaging, and relaxation time quantification, was conducted. The ALPS index, a measure of glymphatic function, was calculated using diffusion-weighted imaging data. Demographic variables, MRI metrics, and ALPS indices were compared between patients with RRMS and those with SPMS. RESULTS: The ALPS index was significantly lower in the SPMS group. Patients with SPMS exhibited longer disease duration and higher Expanded Disability Status Scale (EDSS) scores than those with RRMS. Despite these differences, the correlations between the EDSS score, disease duration, and ALPS index were minimal, suggesting that the impact of these clinical variables on ALPS index variations was negligible. DISCUSSION: Our study revealed the potential microstructural and functional differences between RRMS and SPMS related to glymphatic system impairment. Although disease severity and duration vary among subtypes, their influence on ALPS index differences appears to be limited. This highlights the stronger association between SP conversion and changes in the ALPS index. These findings align with those of previous research, indicating the involvement of the glymphatic system in the progression of MS. CONCLUSION: Although the causality remains uncertain, our study suggests that a reduced ALPS index, reflecting glymphatic system dysfunction, may contribute to MS progression, particularly in SPMS. This suggests the potential of the ALPS index as a diagnostic biomarker for SPMS and underscores the potential of the glymphatic system as a therapeutic target to mitigate MS progression. Future studies with larger cohorts and pathological validation are necessary to confirm these findings. This study provides new insights into the pathogenesis of SPMS and the potential for innovative therapeutic strategies.


Assuntos
Sistema Glinfático , Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Humanos , Esclerose Múltipla Crônica Progressiva/diagnóstico por imagem , Esclerose Múltipla Crônica Progressiva/tratamento farmacológico , Esclerose Múltipla Crônica Progressiva/patologia , Esclerose Múltipla/tratamento farmacológico , Sistema Glinfático/diagnóstico por imagem , Sistema Glinfático/patologia , Estudos Prospectivos , Biomarcadores
6.
Eur Radiol ; 34(2): 1367-1375, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37581661

RESUMO

OBJECTIVES: In the latest World Health Organization classification 2021, grade 4 adult diffuse gliomas can be diagnosed with several molecular features even without histological evidence of necrosis or microvascular proliferation. We aimed to explore whole tumor histogram-derived apparent diffusion coefficient (ADC) histogram profiles for differentiating between the presence (Mol-4) and absence (Mol-2/3) of grade 4 molecular features in histologically lower-grade gliomas. METHODS: Between June 2019 and October 2022, 184 adult patients with diffuse gliomas underwent MRI. After excluding 121 patients, 18 (median age, 64.5 [range, 37-84 years]) Mol-4 and 45 (median 40 [range, 18-73] years) Mol-2/3 patients with histologically lower-grade gliomas were enrolled. Whole tumor volume-of-interest-derived ADC histogram profiles were calculated and compared between the two groups. Stepwise logistic regression analysis with Akaike's information criterion using the ADC histogram profiles with p values < 0.01 and age at diagnosis was used to identify independent variables for predicting the Mol-4 group. RESULTS: The 90th percentile (p < 0.001), median (p < 0.001), mean (p < 0.001), 10th percentile (p = 0.014), and entropy (p < 0.001) of normalized ADC were lower, and kurtosis (p < 0.001) and skewness (p = 0.046) were higher in the Mol-4 group than in the Mol-2/3 group. Multivariate logistic regression analysis revealed that the entropy of normalized ADC and age at diagnosis were independent predictive parameters for the Mol-4 group with an area under the curve of 0.92. CONCLUSION: ADC histogram profiles may be promising preoperative imaging biomarkers to predict molecular grade 4 among histologically lower-grade adult diffuse gliomas. CLINICAL RELEVANCE STATEMENT: This study highlighted the diagnostic usefulness of ADC histogram profiles to differentiate histologically lower grade adult diffuse gliomas with the presence of molecular grade 4 features and those without. KEY POINTS: • ADC histogram profiles to predict molecular CNS WHO grade 4 status among histologically lower-grade adult diffuse gliomas were evaluated. • Entropy of ADC and age were independent predictive parameters for molecular grade 4 status. • ADC histogram analysis is useful for predicting molecular grade 4 among histologically lower-grade gliomas.


Assuntos
Glioma , Humanos , Adulto , Pessoa de Meia-Idade , Curva ROC , Glioma/diagnóstico por imagem , Glioma/patologia , Imageamento por Ressonância Magnética , Imagem de Difusão por Ressonância Magnética/métodos , Estudos Retrospectivos , Organização Mundial da Saúde
7.
J Magn Reson Imaging ; 59(5): 1476-1493, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37655849

RESUMO

The comprehension of the glymphatic system, a postulated mechanism responsible for the removal of interstitial solutes within the central nervous system (CNS), has witnessed substantial progress recently. While direct measurement techniques involving fluorescence and contrast agent tracers have demonstrated success in animal studies, their application in humans is invasive and presents challenges. Hence, exploring alternative noninvasive approaches that enable glymphatic research in humans is imperative. This review primarily focuses on several noninvasive magnetic resonance imaging (MRI) techniques, encompassing perivascular space (PVS) imaging, diffusion tensor image analysis along the PVS, arterial spin labeling, chemical exchange saturation transfer, and intravoxel incoherent motion. These methodologies provide valuable insights into the dynamics of interstitial fluid, water permeability across the blood-brain barrier, and cerebrospinal fluid flow within the cerebral parenchyma. Furthermore, the review elucidates the underlying concept and clinical applications of these noninvasive MRI techniques, highlighting their strengths and limitations. It addresses concerns about the relationship between glymphatic system activity and pathological alterations, emphasizing the necessity for further studies to establish correlations between noninvasive MRI measurements and pathological findings. Additionally, the challenges associated with conducting multisite studies, such as variability in MRI systems and acquisition parameters, are addressed, with a suggestion for the use of harmonization methods, such as the combined association test (COMBAT), to enhance standardization and statistical power. Current research gaps and future directions in noninvasive MRI techniques for assessing the glymphatic system are discussed, emphasizing the need for larger sample sizes, harmonization studies, and combined approaches. In conclusion, this review provides invaluable insights into the application of noninvasive MRI methods for monitoring glymphatic system activity in the CNS. It highlights their potential in advancing our understanding of the glymphatic system, facilitating clinical applications, and paving the way for future research endeavors in this field. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 5.


Assuntos
Sistema Glinfático , Humanos , Animais , Sistema Glinfático/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Barreira Hematoencefálica , Líquido Extracelular/diagnóstico por imagem , Meios de Contraste , Encéfalo/diagnóstico por imagem
8.
Invest Radiol ; 59(1): 13-25, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37707839

RESUMO

ABSTRACT: Diffusion magnetic resonance imaging tractography is a noninvasive technique that enables the visualization and quantification of white matter tracts within the brain. It is extensively used in preoperative planning for brain tumors, epilepsy, and functional neurosurgical procedures such as deep brain stimulation. Over the past 25 years, significant advancements have been made in imaging acquisition, fiber direction estimation, and tracking methods, resulting in considerable improvements in tractography accuracy. The technique enables the mapping of functionally critical pathways around surgical sites to avoid permanent functional disability. When the limitations are adequately acknowledged and considered, tractography can serve as a valuable tool to safeguard critical white matter tracts and provides insight regarding changes in normal white matter and structural connectivity of the whole brain beyond local lesions. In functional neurosurgical procedures such as deep brain stimulation, it plays a significant role in optimizing stimulation sites and parameters to maximize therapeutic efficacy and can be used as a direct target for therapy. These insights can aid in patient risk stratification and prognosis. This article aims to discuss state-of-the-art tractography methodologies and their applications in preoperative planning and highlight the challenges and new prospects for the use of tractography in daily clinical practice.


Assuntos
Neurocirurgia , Humanos , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Procedimentos Neurocirúrgicos/métodos
9.
AJNR Am J Neuroradiol ; 45(1): 66-71, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38123957

RESUMO

BACKGROUND AND PURPOSE: Impaired glymphatic function has been suggested to be implicated in the pathophysiology of MS and aquaporin-4 immunoglobulin G-positive neuromyelitis optica spectrum disorder. This study aimed to investigate the interstitial fluid dynamics in the brain in patients with myelin oligodendrocyte glycoprotein antibody disorders (MOGAD), another demyelinating disorder, using a noninvasive imaging technique called the diffusivity along the perivascular space (ALPS) index. MATERIALS AND METHODS: A prospective study was conducted on 16 patients with MOGAD in remission and 22 age- and sex-matched healthy control subjects. MR imaging was performed using a 3T scanner, and the ALPS index was calculated using diffusion MR imaging data with a b-value of 1000 s/mm2. The ALPS index and gray matter volumes were compared between the 2 groups, and these parameters were correlated with the Expanded Disability Status Scale. RESULTS: The mean ALPS index of patients with MOGAD was significantly lower than that of healthy controls (Cohen d = 0.93, false discovery rate-corrected P = .02). The lower mean ALPS index was significantly associated with a worse Expanded Disability Status Scale score (Spearman ρ = -0.51; 95% CI, -0.85 to -0.02; P = .03). However, cortical volume and deep gray matter volume were not significantly different between the 2 groups, and they were not correlated with the Expanded Disability Status Scale. CONCLUSIONS: This study suggests that patients with MOGAD may have impaired glymphatic function, as measured by the ALPS index, which is associated with patient disability. Further study is warranted with a larger sample size.


Assuntos
Sistema Glinfático , Neuromielite Óptica , Humanos , Imunoglobulina G , Glicoproteína Mielina-Oligodendrócito , Estudos Prospectivos , Encéfalo , Autoanticorpos
10.
Aging Dis ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38029401

RESUMO

Diffusion-weighted magnetic resonance imaging (dMRI) of brain has helped elucidate the microstructural changes of psychiatric and neurodegenerative disorders. Inconsistency between MRI models has hampered clinical application of dMRI-based metrics. Using harmonized dMRI data of 300 scans from 69 traveling subjects (TS) scanning the same individuals at multiple conditions with 13 MRI models and 2 protocols, the widely-used metrics such as diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI) were evaluated before and after harmonization with a combined association test (ComBat) or TS-based general linear model (TS-GLM). Results showed that both ComBat and TS-GLM significantly reduced the effects of the MRI site, model, and protocol for diffusion metrics while maintaining the intersubject biological effects. The harmonization power of TS-GLM based on TS data model is more powerful than that of ComBat. In conclusion, our research demonstrated that although ComBat and TS-GLM harmonization approaches were effective at reducing the scanner effects of the site, model, and protocol for DTI and NODDI metrics in WM, they exhibited high retainability of biological effects. Therefore, we suggest that, after harmonizing DTI and NODDI metrics, a multisite study with large cohorts can accurately detect small pathological changes by retaining pathological effects.

11.
J Magn Reson Imaging ; 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37877463

RESUMO

BACKGROUND: "Batch effect" in MR images, due to vendor-specific features, MR machine generations, and imaging parameters, challenges image quality and hinders deep learning (DL) model generalizability. PURPOSE: We aim to develop a DL model using contrast adjustment and super-resolution to reduce diffusion-weighted images (DWIs) diversity across magnetic field strengths and imaging parameters. STUDY TYPE: Retrospective. SUBJECTS: The DL model was built using an open dataset from one individual. The MR machine identification model was trained and validated on a dataset of 1134 adults (54% females, 46% males), with 1050 subjects showing no DWI abnormalities and 84 with conditions like stroke and tumors. The 21,000 images were divided into 80% for training, 20% for validation, and 3500 for testing. FIELD STRENGTH/SEQUENCE: Seven MR scanners from four manufacturers with 1.5 T and 3 T magnetic field strengths. DWIs were acquired using spin-echo sequences and high-resolution T2WIs using the T2-SPACE sequence. ASSESSMENT: An experienced, board-certified radiologist evaluated the effectiveness of restoring high-resolution T2WI and harmonizing diverse DWI with metrics such as PSNR and SSIM, and the texture and frequency attributes were further analyzed using gray-level co-occurrence matrix and 1-dimensional power spectral density. The model's impact on machine-specific characteristics was gauged through the performance metrics of a ResNet-50 model. Comprehensive statistical tests were employed for statistical robustness, including McNemar's test and the Dice index. RESULTS: Our DL protocol reduced DWI contrast and resolution variation. ResNet-50 model's accuracy decreased from 0.9443 to 0.5786, precision from 0.9442 to 0.6494, recall from 0.9443 to 0.5786, and F1 score from 0.9438 to 0.5587. The t-SNE visualization indicated more consistent image features across multiple MR devices. Autoencoder halved learning iterations; Dice coefficient >0.74 confirmed signal reproducibility in 84 lesions. CONCLUSION: This study presents a DL strategy to mitigate batch effects in diffusion MR images, improving their quality and generalizability. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 1.

12.
Eur Radiol ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37882836

RESUMO

OBJECTIVE: To determine the feasibility and biologic correlations of dynamic susceptibility contrast (DSC), dynamic contrast enhanced (DCE), and quantitative maps derived from contrast leakage effects obtained simultaneously in gliomas using dynamic spin-and-gradient-echo echoplanar imaging (dynamic SAGE-EPI) during a single contrast injection. MATERIALS AND METHODS: Thirty-eight patients with enhancing brain gliomas were prospectively imaged with dynamic SAGE-EPI, which was processed to compute traditional DSC metrics (normalized relative cerebral blood flow [nrCBV], percentage of signal recovery [PSR]), DCE metrics (volume transfer constant [Ktrans], extravascular compartment [ve]), and leakage effect metrics: ΔR2,ss* (reflecting T2*-leakage effects), ΔR1,ss (reflecting T1-leakage effects), and the transverse relaxivity at tracer equilibrium (TRATE, reflecting the balance between ΔR2,ss* and ΔR1,ss). These metrics were compared between patient subgroups (treatment-naïve [TN] vs recurrent [R]) and biological features (IDH status, Ki67 expression). RESULTS: In IDH wild-type gliomas (IDHwt-i.e., glioblastomas), previous exposure to treatment determined lower TRATE (p = 0.002), as well as higher PSR (p = 0.006), Ktrans (p = 0.17), ΔR1,ss (p = 0.035), ve (p = 0.006), and ADC (p = 0.016). In IDH-mutant gliomas (IDHm), previous treatment determined higher Ktrans and ΔR1,ss (p = 0.026). In TN-gliomas, dynamic SAGE-EPI metrics tended to be influenced by IDH status (p ranging 0.09-0.14). TRATE values above 142 mM-1s-1 were exclusively seen in TN-IDHwt, and, in TN-gliomas, this cutoff had 89% sensitivity and 80% specificity as a predictor of Ki67 > 10%. CONCLUSIONS: Dynamic SAGE-EPI enables simultaneous quantification of brain tumor perfusion and permeability, as well as mapping of novel metrics related to cytoarchitecture (TRATE) and blood-brain barrier disruption (ΔR1,ss), with a single contrast injection. CLINICAL RELEVANCE STATEMENT: Simultaneous DSC and DCE analysis with dynamic SAGE-EPI reduces scanning time and contrast dose, respectively alleviating concerns about imaging protocol length and gadolinium adverse effects and accumulation, while providing novel leakage effect metrics reflecting blood-brain barrier disruption and tumor tissue cytoarchitecture. KEY POINTS: • Traditionally, perfusion and permeability imaging for brain tumors requires two separate contrast injections and acquisitions. • Dynamic spin-and-gradient-echo echoplanar imaging enables simultaneous perfusion and permeability imaging. • Dynamic spin-and-gradient-echo echoplanar imaging provides new image contrasts reflecting blood-brain barrier disruption and cytoarchitecture characteristics.

13.
Neurooncol Adv ; 5(1): vdad084, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554221

RESUMO

Background: Alterations in tumor growth rate (TGR) in recurrent glioblastoma (rGBM) after treatment may be useful for identifying therapeutic activity. The aim of this study was to assess the impact of volumetric TGR alterations on overall survival (OS) in rGBM treated with chemotherapy with or without radiation therapy (RT). Methods: Sixty-one rGBM patients treated with chemotherapy with or without concomitant radiation therapy (RT) at 1st or 2nd recurrence were retrospectively examined. Pre- and post-treatment contrast enhancing volumes were computed. Patients were considered "responders" if they reached progression-free survival at 6 months (PFS6) and showed a decrease in TGR after treatment and "non-responders" if they didn't reach PFS6 or if TGR increased. Results: Stratification by PFS6 and based on TGR resulted in significant differences in OS both for all patients and for patients without RT (P < 0.05). A decrease of TGR (P = 0.009), smaller baseline tumor volume (P = 0.02), O6-methylguanine-DNA methyltransferase promoter methylation (P = 0.048) and fewer number of recurrences (P = 0.048) were significantly associated with longer OS after controlling for age, sex and concomitant RT. Conclusion: A decrease in TGR in patients with PFS6, along with smaller baseline tumor volume, were associated with a significantly longer OS in rGBM treated with chemotherapy with or without radiation. Importantly, all patients that exhibited PFS6 also showed a measurable decrease in TGR.

14.
Clin Cancer Res ; 29(20): 4186-4195, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37540556

RESUMO

PURPOSE: Antiangiogenic therapies are known to cause high radiographic response rates due to reduction in vascular permeability resulting in a lower degree of contrast extravasation. In this study, we investigate the prognostic ability for model-derived parameters describing enhancing tumor volumetric dynamics to predict survival in recurrent glioblastoma treated with antiangiogenic therapy. EXPERIMENTAL DESIGN: N = 276 patients in two phase II trials were used as training data, including bevacizumab ± irinotecan (NCT00345163) and cabozantinib (NCT00704288), and N = 74 patients in the bevacizumab arm of a phase III trial (NCT02511405) were used for validation. Enhancing volumes were estimated using T1 subtraction maps, and a biexponential model was used to estimate regrowth (g) and regression (d) rates, time to tumor regrowth (TTG), and the depth of response (DpR). Response characteristics were compared to diffusion MR phenotypes previously shown to predict survival. RESULTS: Optimized thresholds occurred at g = 0.07 months-1 (phase II: HR = 0.2579, P = 5 × 10-20; phase III: HR = 0.2197, P = 5 × 10-5); d = 0.11 months-1 (HR = 0.3365, P < 0.0001; HR = 0.3675, P = 0.0113); TTG = 3.8 months (HR = 0.2702, P = 6 × 10-17; HR = 0.2061, P = 2 × 10-5); and DpR = 11.3% (HR = 0.6326, P = 0.0028; HR = 0.4785, P = 0.0206). Multivariable Cox regression controlling for age and baseline tumor volume confirmed these factors as significant predictors of survival. Patients with a favorable pretreatment diffusion MRI phenotype had a significantly longer TTG and slower regrowth. CONCLUSIONS: Recurrent glioblastoma patients with a large, durable radiographic response to antiangiogenic agents have significantly longer survival. This information is useful for interpreting activity of antiangiogenic agents in recurrent glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Bevacizumab/uso terapêutico , Inibidores da Angiogênese/uso terapêutico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/tratamento farmacológico , Irinotecano/uso terapêutico , Imageamento por Ressonância Magnética/métodos
15.
NPJ Parkinsons Dis ; 9(1): 122, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591877

RESUMO

Progressive supranuclear palsy (PSP) and corticobasal syndrome (CBS) are characterized by progressive white matter (WM) alterations associated with the prion-like spreading of four-repeat tau, which has been pathologically confirmed. It has been challenging to monitor the WM degeneration patterns underlying the clinical deficits in vivo. Here, a fiber-specific fiber density and fiber cross-section, and their combined measure estimated using fixel-based analysis (FBA), were cross-sectionally and longitudinally assessed in PSP (n = 20), CBS (n = 17), and healthy controls (n = 20). FBA indicated disease-specific progression patterns of fiber density loss and subsequent bundle atrophy consistent with the tau propagation patterns previously suggested in a histopathological study. This consistency suggests the new insight that FBA can monitor the progressive tau-related WM changes in vivo. Furthermore, fixel-wise metrics indicated strong correlations with motor and cognitive dysfunction and the classifiability of highly overlapping diseases. Our findings might also provide a tool to monitor clinical decline and classify both diseases.

16.
Mov Disord ; 38(11): 2019-2030, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37608502

RESUMO

BACKGROUND: Patients with Parkinson's disease (PD) carrying GBA gene mutations (GBA-PD) have a more aggressive disease course than those with idiopathic PD (iPD). OBJECTIVE: The objective of this study was to investigate fiber-specific white matter (WM) differences in nonmedicated patients with early-stage GBA-PD and iPD using fixel-based analysis, a novel technique to assess tract-specific WM microstructural and macrostructural features comprehensively. METHODS: Fixel-based metrics, including microstructural fiber density (FD), macrostructural fiber-bundle cross section (FC), and a combination of FD and FC (FDC), were compared among 30 healthy control subjects, 16 patients with GBA-PD, and 35 patients with iPD. Associations between FDC and clinical evaluations were also explored using multiple linear regression analyses. RESULTS: Patients with GBA-PD showed significantly lower FD in the fornix and superior longitudinal fasciculus than healthy control subjects, and lower FC in the corticospinal tract (CST) and lower FDC in the CST, middle cerebellar peduncle, and striatal-thalamo-cortical pathways than patients with iPD. Contrarily, patients with iPD showed significantly higher FC and FDC in the CST and striatal-thalamo-cortical pathways than healthy control subjects. In addition, lower FDC in patients with GBA-PD was associated with reduced glucocerebrosidase enzyme activity, lower cerebrospinal fluid total α-synuclein levels, lower Montreal Cognitive Assessment scores, lower striatal binding ratio, and higher Unified Parkinson's Disease Rating Scale Part III scores. CONCLUSIONS: We report reduced fiber-specific WM density and bundle cross-sectional size in patients with GBA-PD, suggesting neurodegeneration linked to glucocerebrosidase deficiency, α-synuclein accumulation, and poorer cognition and motor functions. Conversely, patients with iPD showed increased fiber bundle size, likely because of WM reorganization. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Substância Branca , Humanos , Doença de Parkinson/complicações , alfa-Sinucleína/genética , Substância Branca/diagnóstico por imagem , Estudos Transversais , Glucosilceramidase/genética , Mutação/genética
17.
J Neurooncol ; 163(2): 417-427, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37294422

RESUMO

PURPOSE: There is limited knowledge about the associations between sodium and proton MRI measurements in brain tumors. The purpose of this study was to quantify intra- and intertumoral correlations between sodium, diffusion, and perfusion MRI in human gliomas. METHODS: Twenty glioma patients were prospectively studied on a 3T MRI system with multinuclear capabilities. Three mutually exclusive tumor volumes of interest (VOIs) were segmented: contrast-enhancing tumor (CET), T2/FLAIR hyperintense non-enhancing tumor (NET), and necrosis. Median and voxel-wise associations between apparent diffusion coefficient (ADC), normalized relative cerebral blood volume (nrCBV), and normalized sodium measurements were quantified for each VOI. RESULTS: Both relative sodium concentration and ADC were significantly higher in areas of necrosis compared to NET (P = 0.003 and P = 0.008, respectively) and CET (P = 0.02 and P = 0.02). Sodium concentration was higher in CET compared to NET (P = 0.04). Sodium and ADC were higher in treated compared to treatment-naïve gliomas within NET (P = 0.006 and P = 0.01, respectively), and ADC was elevated in CET (P = 0.03). Median ADC and sodium concentration were positively correlated across patients in NET (r = 0.77, P < 0.0001) and CET (r = 0.84, P < 0.0001), but not in areas of necrosis (r = 0.45, P = 0.12). Median nrCBV and sodium concentration were negatively correlated across patients in areas of NET (r=-0.63, P = 0.003). Similar associations were observed when examining voxel-wise correlations within VOIs. CONCLUSION: Sodium MRI is positively correlated with proton diffusion MRI measurements in gliomas, likely reflecting extracellular water. Unique areas of multinuclear MRI contrast may be useful in future studies to understand the chemistry of the tumor microenvironment.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Prótons , Imageamento por Ressonância Magnética , Glioma/diagnóstico por imagem , Glioma/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Imagem de Difusão por Ressonância Magnética , Perfusão , Necrose , Microambiente Tumoral
18.
Radiol Phys Technol ; 16(3): 373-383, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37291372

RESUMO

In automated analyses of brain morphometry, skull stripping or brain extraction is a critical first step because it provides accurate spatial registration and signal-intensity normalization. Therefore, it is imperative to develop an ideal skull-stripping method in the field of brain image analysis. Previous reports have shown that convolutional neural network (CNN) method is better at skull stripping than non-CNN methods. We aimed to evaluate the accuracy of skull stripping in a single-contrast CNN model using eight-contrast magnetic resonance (MR) images. A total of 12 healthy participants and 12 patients with a clinical diagnosis of unilateral Sturge-Weber syndrome were included in our study. A 3-T MR imaging system and QRAPMASTER were used for data acquisition. We obtained eight-contrast images produced by post-processing T1, T2, and proton density (PD) maps. To evaluate the accuracy of skull stripping in our CNN method, gold-standard intracranial volume (ICVG) masks were used to train the CNN model. The ICVG masks were defined by experts using manual tracing. The accuracy of the intracranial volume obtained from the single-contrast CNN model (ICVE) was evaluated using the Dice similarity coefficient [= 2(ICVE ⋂ ICVG)/(ICVE + ICVG)]. Our study showed significantly higher accuracy in the PD-weighted image (WI), phase-sensitive inversion recovery (PSIR), and PD-short tau inversion recovery (STIR) compared to the other three contrast images (T1-WI, T2-fluid-attenuated inversion recovery [FLAIR], and T1-FLAIR). In conclusion, PD-WI, PSIR, and PD-STIR should be used instead of T1-WI for skull stripping in the CNN models.


Assuntos
Encéfalo , Crânio , Humanos , Crânio/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos
19.
Invest Radiol ; 58(8): 548-560, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-36822661

RESUMO

ABSTRACT: With the recent advancements in rapid imaging methods, higher numbers of contrasts and quantitative parameters can be acquired in less and less time. Some acquisition models simultaneously obtain multiparametric images and quantitative maps to reduce scan times and avoid potential issues associated with the registration of different images. Multiparametric magnetic resonance imaging (MRI) has the potential to provide complementary information on a target lesion and thus overcome the limitations of individual techniques. In this review, we introduce methods to acquire multiparametric MRI data in a clinically feasible scan time with a particular focus on simultaneous acquisition techniques, and we discuss how multiparametric MRI data can be analyzed as a whole rather than each parameter separately. Such data analysis approaches include clinical scoring systems, machine learning, radiomics, and deep learning. Other techniques combine multiple images to create new quantitative maps associated with meaningful aspects of human biology. They include the magnetic resonance g-ratio, the inner to the outer diameter of a nerve fiber, and the aerobic glycolytic index, which captures the metabolic status of tumor tissues.


Assuntos
Aprendizado Profundo , Imageamento por Ressonância Magnética Multiparamétrica , Humanos , Imageamento por Ressonância Magnética Multiparamétrica/métodos , Benchmarking , Imageamento por Ressonância Magnética , Aprendizado de Máquina , Estudos Retrospectivos
20.
Magn Reson Imaging ; 96: 67-74, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36423796

RESUMO

Oscillating gradient spin-echo (OGSE) sequences provide access to short diffusion times and may provide insight into micro-scale internal structures of pathologic lesions based on an analysis of changes in diffusivity with differing diffusion times. We hypothesized that changes in diffusivity acquired with a shorter diffusion time may permit elucidation of properties related to the internal structure of extra-axial brain tumors. This study aimed to investigate the utility of changes in diffusivity between short and long diffusion times for characterizing extra-axial brain tumors. In total, 12 patients with meningothelial meningiomas, 13 patients with acoustic neuromas, and 11 patients with pituitary adenomas were scanned with a 3 T magnetic resonance imaging (MRI) scanner with diffusion-weighted imaging (DWI) using OGSE and pulsed gradient spin-echo (PGSE) (effective diffusion times [Δeff]: 6.5 ms and 35.2 ms) with b-values of 0 and 1000 s/mm2. Relative percentage changes between shorter and longer diffusion times were calculated using region-of-interest (ROI) analysis of brain tumors on λ1, λ2, λ3, and mean diffusivity (MD) maps. The diffusivities of PGSE, OGSE, and relative percentage changes were compared among each tumor type using a multiple comparisons Steel-Dwass test. The mean (standard deviation) MD at Δeff of 6.5 ms was 1.07 ± 0.23 10-3 mm2/s, 1.19 ± 0.18 10-3 mm2/s, 1.19 ± 0.21 10-3 mm2/s for meningothelial meningiomas, acoustic neuromas, and pituitary adenomas, respectively. The mean (standard deviation) MD at Δeff of 35.2 ms was 0.93 ± 0.22 10-3 mm2/s, 1.07 ± 0.19 10-3 mm2/s, 0.82 ± 0.21 10-3 mm2/s for meningothelial meningiomas, acoustic neuromas, and pituitary adenomas, respectively. The mean (standard deviation) of the relative percentage change was 15.7 ± 4.4%, 12.4 ± 8.2%, 46.8 ± 11.3% for meningothelial meningiomas, acoustic neuromas, and pituitary adenomas, respectively. Compared to meningiomas and acoustic neuromas, pituitary adenoma exhibited stronger diffusion time-dependence with diffusion times between 6.5 ms and 35.2 ms (P < 0.05). In conclusion, differences in diffusion time-dependence may be attributed to differences in the internal structures of brain tumors. DWI with a short diffusion time may provide additional information on the microstructure of each tumor and contribute to tumor diagnosis.


Assuntos
Neoplasias Encefálicas , Neoplasias Meníngeas , Meningioma , Neuroma Acústico , Neoplasias Hipofisárias , Humanos , Neoplasias Hipofisárias/diagnóstico por imagem , Neuroma Acústico/diagnóstico por imagem , Meningioma/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Difusão , Neoplasias Meníngeas/diagnóstico por imagem , Encéfalo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA